(2/19/25)
Study: insecticide exposure results in increased levels of octopamine, demonstrated by a normal distribution.
1 - 3
treatment <- rnorm(n=30, mean=0, sd=1)
print(treatment)
## [1] 1.22807429 0.42376645 -0.22337402 -0.57126069 -0.75398514 -0.17110028
## [7] -0.67205841 1.52212995 0.10758333 0.31686733 -0.96869836 -0.39585329
## [13] 0.75384338 0.72968028 -0.26508610 -1.18146527 -1.09965968 -1.51453182
## [19] -0.69477996 -0.73027348 -0.07977261 0.75370980 -0.66585257 -0.01131366
## [25] 1.20604629 -0.05311278 0.48752228 0.16805724 -0.73123679 0.37960820
control<- rnorm(n=30, mean=0, sd=1)
print(control)
## [1] 1.808398037 1.249693869 0.624341899 1.155743578 -1.398841210
## [6] -0.324842981 0.199575032 -0.618993662 -0.390432297 0.534496026
## [11] -0.834429341 -0.137810383 -0.400486383 0.687891754 0.395392612
## [16] -0.484420929 -0.259640577 0.632945568 0.012875113 0.667856958
## [21] 1.043437539 0.305397540 1.150048870 0.792678215 0.123982010
## [26] 2.339817336 0.583287628 -0.005730008 -0.693668971 0.942790014
octopamine_data <- c(treatment, control)
print(octopamine_data)
## [1] 1.228074285 0.423766452 -0.223374023 -0.571260687 -0.753985144
## [6] -0.171100277 -0.672058413 1.522129950 0.107583327 0.316867334
## [11] -0.968698359 -0.395853293 0.753843384 0.729680279 -0.265086100
## [16] -1.181465266 -1.099659677 -1.514531819 -0.694779956 -0.730273483
## [21] -0.079772615 0.753709798 -0.665852571 -0.011313655 1.206046293
## [26] -0.053112782 0.487522283 0.168057235 -0.731236794 0.379608203
## [31] 1.808398037 1.249693869 0.624341899 1.155743578 -1.398841210
## [36] -0.324842981 0.199575032 -0.618993662 -0.390432297 0.534496026
## [41] -0.834429341 -0.137810383 -0.400486383 0.687891754 0.395392612
## [46] -0.484420929 -0.259640577 0.632945568 0.012875113 0.667856958
## [51] 1.043437539 0.305397540 1.150048870 0.792678215 0.123982010
## [56] 2.339817336 0.583287628 -0.005730008 -0.693668971 0.942790014
octopamine_data <- data.frame(octopamine_data)
print(octopamine_data)
## octopamine_data
## 1 1.228074285
## 2 0.423766452
## 3 -0.223374023
## 4 -0.571260687
## 5 -0.753985144
## 6 -0.171100277
## 7 -0.672058413
## 8 1.522129950
## 9 0.107583327
## 10 0.316867334
## 11 -0.968698359
## 12 -0.395853293
## 13 0.753843384
## 14 0.729680279
## 15 -0.265086100
## 16 -1.181465266
## 17 -1.099659677
## 18 -1.514531819
## 19 -0.694779956
## 20 -0.730273483
## 21 -0.079772615
## 22 0.753709798
## 23 -0.665852571
## 24 -0.011313655
## 25 1.206046293
## 26 -0.053112782
## 27 0.487522283
## 28 0.168057235
## 29 -0.731236794
## 30 0.379608203
## 31 1.808398037
## 32 1.249693869
## 33 0.624341899
## 34 1.155743578
## 35 -1.398841210
## 36 -0.324842981
## 37 0.199575032
## 38 -0.618993662
## 39 -0.390432297
## 40 0.534496026
## 41 -0.834429341
## 42 -0.137810383
## 43 -0.400486383
## 44 0.687891754
## 45 0.395392612
## 46 -0.484420929
## 47 -0.259640577
## 48 0.632945568
## 49 0.012875113
## 50 0.667856958
## 51 1.043437539
## 52 0.305397540
## 53 1.150048870
## 54 0.792678215
## 55 0.123982010
## 56 2.339817336
## 57 0.583287628
## 58 -0.005730008
## 59 -0.693668971
## 60 0.942790014
Justifications:
4 - 5
one.way <- aov(treatment ~ control, data = octopamine_data)
summary(one.way)
## Df Sum Sq Mean Sq F value Pr(>F)
## control 1 0.784 0.7844 1.363 0.253
## Residuals 28 16.115 0.5755
6
treatmenti <- rnorm(n=10, mean=0, sd=1)
print(treatment)
## [1] 1.22807429 0.42376645 -0.22337402 -0.57126069 -0.75398514 -0.17110028
## [7] -0.67205841 1.52212995 0.10758333 0.31686733 -0.96869836 -0.39585329
## [13] 0.75384338 0.72968028 -0.26508610 -1.18146527 -1.09965968 -1.51453182
## [19] -0.69477996 -0.73027348 -0.07977261 0.75370980 -0.66585257 -0.01131366
## [25] 1.20604629 -0.05311278 0.48752228 0.16805724 -0.73123679 0.37960820
controli<- rnorm(n=10, mean=0, sd=1)
print(control)
## [1] 1.808398037 1.249693869 0.624341899 1.155743578 -1.398841210
## [6] -0.324842981 0.199575032 -0.618993662 -0.390432297 0.534496026
## [11] -0.834429341 -0.137810383 -0.400486383 0.687891754 0.395392612
## [16] -0.484420929 -0.259640577 0.632945568 0.012875113 0.667856958
## [21] 1.043437539 0.305397540 1.150048870 0.792678215 0.123982010
## [26] 2.339817336 0.583287628 -0.005730008 -0.693668971 0.942790014
octopamine_datai <- c(treatmenti, controli)
print(octopamine_datai)
## [1] 1.98622358 -0.27252682 -0.61515801 0.73185524 -3.61760935 -1.50488888
## [7] -0.17640761 -0.43322014 -1.13223687 1.48959746 -0.27103042 0.02801763
## [13] -0.71846892 1.18262578 0.18985322 0.34375992 0.70582111 0.39809882
## [19] 0.22003534 -0.58194906
octopamine_datai <- data.frame(octopamine_datai)
one.wayi <- aov(treatment ~ control, data = octopamine_datai)
summary(one.wayi)
## Df Sum Sq Mean Sq F value Pr(>F)
## control 1 0.784 0.7844 1.363 0.253
## Residuals 28 16.115 0.5755
for (i in octopamine_datai) {
cat (runif(1), "\n")
}
## 0.01515622
for (i in octopamine_datai) {
cat (runif(5), "\n")
}
## 0.8156116 0.6802734 0.5510175 0.2583638 0.4207502
for (i in octopamine_datai) {
cat (runif(10), "\n")
}
## 0.3685087 0.7696729 0.3298483 0.4318846 0.07244364 0.7967316 0.2404264 0.4015762 0.3818391 0.4887981
for (i in octopamine_datai) {
cat (runif(30), "\n")
}
## 0.3958549 0.3203885 0.9892471 0.005579167 0.02033918 0.7322405 0.03463807 0.6756334 0.9530099 0.3855874 0.5998217 0.2839669 0.6450383 0.3299902 0.5071298 0.05546348 0.36545 0.633249 0.4544673 0.3700083 0.1479238 0.2483389 0.05622335 0.8845427 0.9059982 0.60044 0.2591906 0.03934832 0.750318 0.4616841
5 samples is the smallest effective size needed to detect a significant pattern between the treatment and control.
7
for (i in octopamine_data) {
cat (runif(1), "\n")
}
## 0.4425168
for (i in octopamine_data) {
cat (runif(5), "\n")
}
## 0.125999 0.5320762 0.2821024 0.08010607 0.6181827
for (i in octopamine_data) {
cat (runif(10), "\n")
}
## 0.4034153 0.5853156 0.1404649 0.6741628 0.9390835 0.1319064 0.9907421 0.9560928 0.8396608 0.6617118
for (i in octopamine_data) {
cat (runif(30), "\n")
}
## 0.4827558 0.07852272 0.3077129 0.1807701 0.6742155 0.6598326 0.06910303 0.02597065 0.2857935 0.6956938 0.9027163 0.6446036 0.1312227 0.1625797 0.3647439 0.5952584 0.3321078 0.8540156 0.7283407 0.1809591 0.09919512 0.5392613 0.5247298 0.04480236 0.3683639 0.3966282 0.7542446 0.2295815 0.6075128 0.01814592
5 samples is the smallest effective size needed to detect a significant pattern between the treatment and control that were originally hypothesized.